WhiteElephan

WHITE ELEPHANT GMBH

SkyTrack

Reference Manual

Urs Maurer

Version:	Modified:	
1.0	5-Oct-17	Original Issue
1.1	21-Dec-17	LX 200 protocol support
1.2	25-Oct-18	New SkyTracker hardware
1.3	8-Jan-19	Support different steps/rev per axis

Table of Contents

1	Intro	oduction	1
2	Gett	ting Started	1
3	Con	figure SkyTrack	2
	3.1 3.1.1 3.1.2 3.1.3	Locate the configuration data directory OSX Linux Windows 10	2 2 2 2
	3.2	Contents of SkyTrack data directory	3
	3.2.1	Program configuration data (SkyTrack.ini)	3
	3.2.2	Favorites list of Sky Objects (Favorites.txt)	6
	3.2.3	Solar Objects	ь 7
	3.2.5	Objects from Catalogs	, 7
	3.2.6	Sky Objects	7
	3.2.7	On Earth Objects	7
	3.3	Small Solar System Bodies	8
	3.3.1	Download Ephemerides	8
4	Tele	scope Setup1	1
	4.1	Display Page1	1
	4.2	Setup Page	2
	4.2.1	Image Orientation1	2
	4.2.2	Autoguiding Speed1	2
	4.2.3	Refraction Parameters	2
	4.2.4	Setup Operation1.	2
	4.3	Pole Axis Alignment1	3
	4.4	Local Alignment1	3
	4.5	Global Alignment14	4
	4.6	Set Sky Line14	4
5	Har	dware1	5
	5.1	Stepper Controller	5
	5.1.1	Power and Ethernet Connections	5
	5.1.2	Motor and Guider Connections1	6
	5.1.3	Stepper Controller Board	6
	5.2	Handbox	7
	5.2.1	Handbox Inside	8
	5.2.2	Handbox Schematics1	9
6	Lego	acy Hardware20	0
	6.1	Stepper Controller	0
	6.1.1	Stepper Controller Board	0

1 Introduction

SkyTrack is a PC program that is able to control the movement of a telescope to find and follow stars, planets, deep sky objects, small solar system bodies (SSSB) such as comets or near earth objects such as satellites.

The program supports telescopes that have simple stepper motors (without decoders) with either Equatorial or Azimuthal mountings.

The telescope can be controlled using the program's graphical user interface (GUI), a numeric keypad or via Stellarium. In the latter case the program sends feedback to Stellarium so that it can keep its display up to date. The use of Stellarium is not a requirement.

Other features that are often missing from contemporary products include:

- Favorites: a list of frequently observed objects.
- Horizon: For fixed telescopes and those at their "home" location, the actual horizon can be defined. The actual horizon differs from the true horizon when buildings obscure the true horizon. This feature allows the program to improve the accuracy of its filtering of visible objects.
- Only list objects that can currently be seen or, in the case of NEOs, are soon to be seen.
- Catalogs: Objects can be named according to a variety of catalogs. The same astronomical object is called different things according to the catalog used.
- On Earth Objects: For demonstration purposes, when the weather is overcast, it is sometimes useful to be able to position the telescope onto a nearby terrestrial object (e.g. a road sign). In this case the rotation of the earth must be ignored.
- Park position: For fixed telescopes or those at their "home" location, it is useful to park the telescope to a known position before powering off. This saves the need to realign the telescope next time it is used.
- Normal and Expert modes: Useful to prevent shared or public telescopes from being accidently misconfigured.

2 Getting Started

The easiest way to get SkyTrack running is to follow the instructions of the SkyTrack User Manual.

3 Configure SkyTrack

3.1 Locate the configuration data directory

3.1.1 OSX

First open the application data directory by starting the **Finder's Go to Folder...** and then entering: **~/Library/Application Support**

Go to	Folder	
Go to the folder: ~/Library/Application Support		~
	Cancel	Go

Then browse to the SkyTrack data subdirectory: White Elephant/SkyTrack

3.1.2 Linux

First open Home and make the hidden directories visible by entering: Ctrl-h

Then browse to the SkyTrack data subdirectory: .White Elephant and then SkyTrack

3.1.3 Windows 10

First open the application data directory by executing: explorer %APPDATA%

	Type the name of a progr resource, and Windows v	ram, folder, docun vill open it for you.	nent, or Internet
Open:	explorer %APPDATA%		¥

Then browse to the SkyTrack data subdirectory: White Elephant\SkyTrack

3.2 Contents of SkyTrack data directory

File Home S	hare	View		~
← → * ↑	Whit	te Elephant 🔸 SkyTr	rack 🗸 🗸	ල Search SkyTr , P
This PC	^	Name	Date modified	Туре
Desktop		Favorites.txt	4/26/2017 4:18 PM	Text Document
Documents		SkyTrack.ini	4/26/2017 4:18 PM	Configuration settings
Downloads		🔊 Log.ini	4/18/2017 3:52 PM	Configuration settings
Downloads		Alignment	4/18/2017 3:54 PM	File folder
J Music	=	Data	4/18/2017 3:38 PM	File folder
Pictures		Neo	4/26/2017 4:18 PM	File folder
Videos		Sky Line	4/26/2017 4:18 PM	File folder
Local Disk (C:)	~			

This directory contains the following configuration data:

- SkyTrack.ini -> program configuration data
- Favorites.txt -> list of the favorite sky objects
 - Log.ini -> configuration of program logging
 - Sky Line -> sky line definition data

•

•

•

•

- Alignment -> alignment correction data
 - Neo -> near earth object information
 - Data -> binary program data
- SSSB -> small solar system body information

3.2.1 Program configuration data (SkyTrack.ini)

The file SkyTrack.ini contains information on how to control the telescope. It is automatically generated when SkyTrack is first started. If Stellarium is already installed and configured, its configuration is taken to initialize the language and site information.

The content of the configuration file is split into the sections Localization, Telescope, Stellarium and Site.

🧾 SkyTrack.ini - Notepad		-		×	
File Edit Format View I	Help				
[Localization]					^
Language = English					
[Telescope] Name IP Address Steps Per Revolution Clocks Per Second Park Azimuth Park Altitude Pole Height Moving Speed List First Accelleration Second Accelleration First Lower Limit First Upper Limit Second Lower Limit	<pre>= Newton = None = 6144000 = 5000228 = +74° = -5° = 90° = 6"/s, 1'/s, = 30'/s² = 30'/s² = -1726° = +1874° = -10° = 000</pre>	10'/s,	3°00'	/s	
[Lx200] Port = 4030	= +90°				
[Stellarium] Port = 10001					
[Site] Longitude = +8°36'35 Latitude = +47°42'19 Altitude = 540m Sky Line = Newton	.51" 9.81"				>

The Localization section contains:

• Language = <*language*> The language is English, French, German, Greek, Italian or Spanish.

The Telescope section contains the following properties:

- Name = <name> The Telescope's <name> to be shown in the SkyTrack windows title bar. If the name is Setup then the SkyTrack program runs in expert mode. (See chapter 4)
- IP Address = <address or name> If the name is "SkyTracker" for Windows (or "SkyTracker.local" for Linux and OSX) then SkyTracker hardware must be connected via Ethernet. If the name is "None" then the telescope is simulated.
- Steps Per Revolution = <number>
 Defines the number of micro steps used to turn a telescope axis by 360°.
 The SkyTracker hardware stepper controller uses 16 micro steps per step.

If the gearing is different per axis the two values must be individually defined. **First Steps Per Revolution** = <*number*> **Second Steps Per Revolution** = <*number*>

- Clocks Per Second = <number>
 Defines the time resolution of the actual hardware. For the SkyTracker hardware a value of 5,000,000 is used.
- Park Azimuth = <angle>
 Park Altitude = <angle>
 Park azimuth and altitude define the telescopes park position.
- Pole Height = <angle>
 For an azimuth mount the pole height should be set to 90°. For an equatorial mount <angle> should be replaced by the word Latitude.
- Moving Speed List = <speed>, <speed>, <speed>, <speed> ...
 An ascending list of speeds is used to manually control the telescope via the arrow keys. The + and

 keys change from one value to the next or previous. The last value of the list is the maximum speed for all movements except when adjusting (movements whilst tracking an object).
- First Acceleration = <acceleration> Defines the maximum acceleration for the azimuth or right ascension axis.
- Second Acceleration = < acceleration > Defines the maximum acceleration for the altitude or declination axis.

First Lower Limit = <angle>
 First Upper Limit = <angle>
 Second Lower Limit = <angle>
 Second Upper Limit = <angle>
 Define the Positioning limits for two axes. An upper and lower limit of 0° means no limit. The
 equatorial mount's second upper limit with a value over 90° specifies the declination value after a
 meridian flip.

Examples:

Equatorial Mount

First Lower Limit $= -360^{\circ}$ First Upper Limit $= +360^{\circ}$ Second Lower Limit $= -30^{\circ}$ Second Upper Limit $= +210^{\circ}$

Azimuthal Mount

First Lower Limit $= -1726^{\circ}$ First Upper Limit $= +1874^{\circ}$ Second Lower Limit $= -10^{\circ}$ Second Upper Limit $= +90^{\circ}$

The Lx200 section contains:

• **Port** = <number>

Defines the port number for the Lx200 protocol server. This enables a smart phone or tablet computer to control the telescope.

Examples:

SkySafari 5 Pro (Telescope Setup: Scope Type – Meade LX-200 Classic)

The Stellarium section contains:

Port = <number>
 Defines the port number used by the Stellarium telescope control.

The Site section contains:

- Longitude = <angle>
 Latitude = <angle>
 Altitude = <angle>
 Telescope location information.
- Sky Line = <name> Defines the name of the sky line database file (see chapter: Set Sky Line)

3.2.2 Favorites list of Sky Objects (Favorites.txt)

The file Favorites.txt is automatically generated when SkyTrack is first started. In this file, one object per line of text can be defined. Empty lines are allowed.

For example:

🖡 Favorites.txt - Notepad		
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp		
Mercury Venus Moon Mars Jupiter Saturn Uranus Neptune Pluto		
LM N 0° 0° LM S 180° 0° LM W 270° 0° LM E 90° 0°		
Nova del 2013 PNV J20233073+2046041 20h23m30.7s +20°46'04"		
HIP 95947 Albireo HIP 27989 Betelgeuse HIP 65378 Mizar HIP 11767 Polaris HIP 24436 Rigel HIP 32349 Sirius HIP 91262 Vega		
NGC 869 h-Persei NGC 884 χ-Persei OCl 113.0 Cr399 3C 273		
C39 Eskimo nebula C34 Veil nebula		
M3 M11 Wild Duck cluster M31 Andromeda galaxy M42 Orion nebula M51 Whirlpool galaxy M57 Ring nebula		
	2 .	-

3.2.3 Solar Objects

For solar objects, any of the following names, in any of the supported languages, are allowed:

• Sun

Warning: if no solar filter is in use, the sun **must not** be added to the list.

- Moon
- Mercury
- Venus
- Mars
- Jupiter
- Saturn
- Neptune
- Pluto

3.2.4 Small Solar System Bodies (SSSB)

A file with the extension **.sssb**, placed in the folder where the file Favorites.txt is located, defines an SSSB. The name can then be added to the favorites list.

Examples: C2015-V2(Johnson)

3.2.5 Objects from Catalogs

The following syntax defines an object:

<object_id> or <object_id> { <name>

For Caldwell and Messier objects the name is appended to the object id. For the other objects the name replaces the object id.

Examples:

HIP 32349 ¦ Sirius(Sirius in favorite list)M57 ¦ Ring Nebula(M57 Ring Nebula in favorite list)

Objects can be defined from any of the following integrated catalogs.

- Caldwell
- HIP
- HR
- Messier
- NEO
- NGC
- OCI
- Quasars

3.2.6 Sky Objects

The following syntax defines a sky object: <name> ¦ <description> ¦ <right ascension> ¦ <declination>

Example:

Nova Del 2013 ¦ PNV J20233073+2046041 ¦ 2h23m30.7s ¦+20°46'04"

3.2.7 On Earth Objects

The id "LM" (Land Marks) starts the definition for stationary objects.

LM <name> ¦ <azimuth> ¦ <altitude>

Examples: LM Road Sign ¦ 259°43' ¦ 2°38' LM West ¦ 270° ¦ 0°

3.3 Small Solar System Bodies

A small solar system body (SSSB) is an object in the solar system that is neither a planet, nor a dwarf planet, nor a satellite. For example: comets are small solar system bodies.

To track an SSSB, a table of its future positions - so called ephemerides – has to be downloaded.

3.3.1 Download Ephemerides

The following Web-Interface allows the downloading of ephemerides:

https://ssd.jpl.nasa.gov/horizons.cgi

3.3.1.1 Change Target Body

Target Body		
Lookup the specified body	r: Applianally limit to all bodies (no limit)	Search

3.3.1.2 Change Observer Location

Specify Observer Location:

You can specify a topocentric observer location by choosing from a list of major world cities, by choosing from a list of world-wide observatories, or by giving the latitude, longitude, and altitude. You can also specify non-topocentric Horizons-specific location codes such as the sun or another planet.

Please select from from the following list:

- lookup a named location
- choose from a list of locations
 specify latitude, longitude, and altitude
- specify latitude, longitude, and alti

Specify Ol	bserver Coordinat	es
Longitude a always be use spaces accuracy.	nd <i>Latitude</i> can be positive and use the s or commas betwe	entered as either "degrees minutes seconds" or decimal degrees. In either case, they should e appropriate East/West and North/South selections. If entering "degrees minutes seconds" en elements. If <i>Altitude</i> is unknown, zero can be used for optical sites without much loss of
Longitude	8.60986388888	degrees ●East ○West)
Latitude	47.70550277777	degrees ● North
Altitude	0.54	kilometers \checkmark above the reference ellipsoid {WGS-84, or approx. sea level for Earth})
Body ID	399	Horizons body ID of the central body: e.g. '399' for Earth, '499' for Mars)
Use Spec	ified Coordinates	Reset Form Cancel

3.3.1.3 Change Time Span

Time Span switch to discrete-times form	
Preset: 10 day 30 day 60 day	Available time span for currently selected target body: 1599-Dec-12 to 2500-Dec-30 TT.
Start Time: 2017-07-01 Stop Time: 2017-08-30	Times may be specified as calendar dates and optionally times (e.g. "YYYY{BC AD}-MMM-DD {hh:mm} {UT TT})", or Julian dates (e.g. "{JD } poppond popp") where items in curly braces () are optional. For years
Step Size: 1 hours	earlier than 1000, be sure to append 'AD' (or 'BC' as appropriate). Unless otherwise specified, UT is assumed for OBSERVER tables.
Use Specified Times Cancel	See the HORIZONS documentation for accepted formats and advanced capabilities. Allowable time-spans for all bodies are available on a separate page.

3.3.1.4 Change Table Settings

 Astrometric RA & DEC Apparent RA & DEC Rates; RA & DEC Rates; RA & DEC Apparent AZ & EL Rates; AZ & EL Satellite X & Y, pos. angle Local apparent sidereal time Airmass & extinction Usual mag. & Surface Brght Illuminated fraction Usual mag. & Surface Brght Satellite angular separ/vis. Target angular diameter Observer sub-lon & sub-lat 	 16. Sub-Sun position angle & distance 17. North Pole position angle & distance 18. Heliocentric ecliptic lon. & lat. 19. Heliocentric range & range-rate 20. Observer range & range-rate 21. One-way (down-leg) light-time 22. Speed wrt Sun & observer 23. Sun-Observer-Target ELONG angle 24. Sun-Target-Observer ~PHASE angle 25. Target-Observer-Moon angle/ Illum% 26. Observer-Primary-Target angle 27. Sun-Target radial & -vel pos. angle 28. Orbit plane angle 29. Constellation ID 	 * 31. Observer ecliptic Ion. & Iat. 32. North pole RA & DEC 33. Galactic longitude & latitude 34. Local apparent SOLAR time 35. Earth->obs. site light-time > 36. RA & DEC uncertainty > 37. Plane-of-sky error ellipse > 38. POS uncertainty (RSS) > 39. Range & range-rate 3-sigmas > 40. Doppler & delay 3-sigmas 41. True anomaly angle 42. Local apparent hour angle 43. PHASE angle & bisector 		
15. Sun sub-longitude & sub-latitude 30. Delta-T (TDB - UT) Notes: * affected by optional atmospheric refraction setting (below) > statistical value that uses orbit covariance if available Observer quantities are described in the HORIZONS documentation. Use Selected Settings Cancel				

Optional observer-table settings:				
date/time format :	both display date/time in year-month-day and/or Julian-day format			
time digits :	minutes (HH:MM) controls output precision of time			
angle format :	decimal degrees			
output units :	km & km/s ∨ units for most output quantities			
range units :	astronomical units 🗸 units for range-type quantities			
refraction model :	airless model (no refraction) — select atmospheric refraction model			
airmass cut-off :	suppress output when airmass is greater than limit [1 to 38]			
elevation cutoff :	0 (deg) suppress output when object elevation is less than limit [-90 to 90]			
solar elong. cut-off :	- (deg) suppress output when solar elongation is outside (min,max) range [0 to 180, min to 180]			
hour angle cutoff :	(h) suppress output when the local hour angle (LHA) exceeds value [0 to 12]			
angular rate cutoff :	(arcsec/h) suppress output when the RA/Dec angular rate exceeds this value [0 to 100000]			
suppress range-rate :	suppress range-rate for range/range-rate output			
skip daylight :	suppress output during daylight			
extra precision :	output addition digits for RA/Dec quantities			
RTS flag :	disable output data only at target rise/transit/set (RTS)			
reference system :	ICRF/J2000.0 V reference frame for geometric and astrometric quantities			
CSV format :	output data in Comma-Separated-Values (CSV) format			
object page :	☑ include object information/data page on output			
Use Settings Above	Default Optional Settings Cancel			

3.3.1.5 Change Display/Output

OHTML (default)	Ephemeris results will be shown in a normal formatted web page.		
◯ plain text	Ephemeris results will be displayed as plain text (ASCII).		
I download/save	Ephemeris results will be saved to a local file (this assumes your browser supports file downloads)		
Use Selection Abo	Cancel		

3.3.1.6 Generate Ephemerides

Current Settings	
Ephemeris Type [change] : OBSERVER Target Body [change] : Comet C/2015 V2 (Johnson) Observer Location [change] : user defined (8°36'35.5"E, 47°42'19.8"N, 0.54 k Time Span [change] : Start=2017-07-11, Stop=2017-09-09, Step=1 h Table Settings [change] : QUANTITIES=1; date/time format=BOTH; angle : CSV format=YES Display/Output [change] : download/save (plain text file)	um) format=DEG; elevation cutoff=0;
Generate Ephemeris	
Do you want to open or save horizons_results.txt from ssd.jpl.nasa.gov?	Open Save 🔻 Cancel

The new file **horizons_result.txt** can now be renamed to **C2015-V2(Johnson).sssb** and then placed in the same folder where the file **Favorites.txt** is located. Then the name **C2015-V2(Johnson)** can be added to the favorites list.

4 Telescope Setup

To enable a telescope setup the mode has to be changed from normal to expert. This can be achieved by changing the name in the file SkyTrack.ini to Setup.

After the next start of SkyTrack the following should be visible:

4.1 Display Page

4.2 Setup Page

4.2.1 Image Orientation

Whilst tracking, the meaning of the arrow keys to adjust a sky object can be changed. The pull-down menu allows the selection of one of the following image orientations:

- > Correct
- > Upside Down Up Down keys swapped.
- Backwards Left Right keys swapped.
- > Rotated Up Down and Left Right keys swapped.

4.2.2 Autoguiding Speed

The speed for autoguiding is defined in arc seconds per second. A typical value would be **8"/s**. A value of **0"/s** allows the use of a handbox instead of an autoguiding camera.

4.2.3 Refraction Parameters

Two parameters are used to correct the refraction.

- Air Pressure in hecto Pascal
- Temperature in degrees Celsius

A value of zero for the air pressure switches off the refraction corrections.

4.2.4 Setup Operation

One of the following operations can be selected (see corresponding chapter for more information).

- > Align 1 Star to Synch to the tracking object (clears the adjustment offsets).
- > Align Pole Axis to adjust the pole axis (only for equatorial mounts).
- > Align Global alignment using many stars to generate a global correction matrix.
- > Align Local local alignment (if autoguiding is not possible).
- Set Sky Line to define the actual horizon.

4.3 Pole Axis Alignment

To align the pole axis of an equatorial mount three stars have to be aligned. The stars should not be close to the pole or zenith and the altitude should be greater than 30 degrees. After aligning the third star, the telescope is positioned so that mechanically aligning it back to the third star the pole axis will be aligned. The Synch button allows synchronizing the RA and Dec axis. The System Error depends on the quality of the telescope and how precise the aligning was done. If the error is too big the Clear button can be used to allow a new alignment procedure

Setup Simulation 1.4 😐 🗵 🔀	Setup Simulation 1.4 😐 🛛 🔀	Setup Simulation 1.4 😐 🗵 🔀	Setup Simulation 1.4 😐 🖾 🛛
Selection Catalog	Selection Catalog	Selection Catalog	Selection Catalog
Control Display Setup	Control Display Setup	Control Display Setup	Control Display Setup
Add First Clear	Add Second Clear	Add Third Clear	Synch Clear
Orientation Correct 💌	Orientation Correct 🔹	Orientation Correct 💌	Orientation Correct -
Autoguiding O'Ys	Autoguiding 0''/s	Autoguiding 0''/s	Autoguiding 0''ys
Air Pressure OhPa	Air Pressure OhPa	Air Pressure OhPa	Air Pressure OhPa
Temperature 10°C	Temperature 10°C	Temperature 10°C	Temperature 10°C
Operation Align Pole Axis	Operation Align Pole Axis	Operation Align Pole Axis -	Operation Align Pole Axis -
Max Magnitude 4.000	Max Magnitude 4.000	Max Magnitude 4.000	Max Magnitude 4.000
Aligned Stars	Aligned Stars	Aligned Stars	Aligned Stars
Pole Az Offset	Pole Az Offset	Pole Az Offset	Pole Az Offset -0°02'25.137''
Pole Alt Offset	Pole Alt Offset	Pole Alt Offset	Pole Alt Offset -0°01'12.807''
Ra Rotation	Ra Rotation	Ra Rotation	Ra Rotation -0°00'01.003''
Dec Rotation	Dec Rotation	Dec Rotation	Dec Rotation -0°05'00.493''
System Error	System Error	System Error	System Error +0°00'10.498''
TRACKING	TRACKING	TRACKING	TRACKING

4.4 Local Alignment

If autoguiding is not possible, local alignment can be used to position the telescope more precisely in a local area. At least five stars have to be aligned. After the telescope is stopped the Apply button completes the operation.

Selection Catalog	Selection Catalog	Selection Catalog	
Control Display Setup	Control Display Setup	Control Display Setup Apply Clear	
Orientation Correct -	Goto Stop	Orientation Correct 💌	
Autoguiding 0''/s		Autoguiding 0''7s	
Air Pressure OhPa	Target	Air Pressure OhPa	
Temperature 10°C		Temperature 10°C	
Operation Align Local 🔻	Operation Align Local 💌		
Max Magnitude 4.000	SØ <park position=""></park>	Max Magnitude 4.000	
Aligned Stars 5	S2 Honus	Aligned Stars 5	

4.5 Global Alignment

The global alignment operation allows the alignment of typically around 50 stars to build a global correction matrix. The alignment information is added to a file called **New_Data.txt** in the alignment folder in the SkyTrack application data area. To keep the file it can be renamed.

After the Align Global operation is selected the next tracked star enables the adding of alignment data. The next star is positioned automatically according to the first star's altitude and the chosen maximum magnitude. If there are no more stars to add in the current altitude band, the operation can be restarted to add data at a different altitude. The Next button allows going to the next star without adding the data of the actual star.

4.6 Set Sky Line

To define the actual horizon the telescope has to be directed to landmarks at the horizon and then by pushing the add button added to the database. The database is located in the sky line folder of the SkyTrack application data area.

5 Hardware

5.1 Stepper Controller

The SkyTracker controller is connected via Ethernet to a PC running the SkyTrack program. A handbox or an autoguider can be connected to the guider input.

5.1.1 Power and Ethernet Connections

5.1.2 Motor and Guider Connections

To change the direction of the motor rotation either the white and brown or the black and blue wires must be swapped. The ST4 wiring for the RJ12 connector is documented in chapter 5.2.2.

The sync pulse can be used to synchronize the internal clock to an external time reference - further details on request.

The white and grey wires are reserved for future development. These must be left disconnected.

5.1.3 Stepper Controller Board

Two potentiometers on the controller board are used to adjust the current of the stepper motors.

5.2 Handbox

The following pictures show a possible handbox implementation.

5.2.2 Handbox Schematics

The handbox is shown from the back (left and right is swapped). For the diodes the type 1N4148 could be used.

RJ12 wiring for autoguiding (ST4) with supplied Guider Cable:

- 1 Not connected
- 2 Red wire
- 3 Blue wire
- 4 Pink wire
- 5 Brown wire
- 6 Green wire

6 Legacy Hardware

6.1 Stepper Controller

The SkyTracker controller is connected via Ethernet to a PC running the SkyTrack program. A handbox or an autoguider (ST4) can be connected to the guider input.

6.1.1 Stepper Controller Board

Two potentiometers on the controller board are used to adjust the current of the stepper motors.

The stepper motors coil A (B) have to be connected to pins 1 and 2 (3 and 4) of the RJ10 connectors. To change the direction of rotation either the connections 1 and 2 or else 3 and 4 must be swapped.